Study on Rapid Inversion of Soil Water Content from Ground-Penetrating Radar Data Based on Deep Learning

نویسندگان

چکیده

Ground-penetrating radar (GPR) is an efficient and nondestructive geophysical method with great potential for detecting soil water content at the farmland scale. However, a key challenge in detection obtaining rapidly real-time. In recent years, deep learning methods have become more widespread earth sciences, making it possible to use them inversion from GPR data. this paper, we propose neural network framework GPRSW based on of end-to-end that directly inverts volumetric (VSWC) through single-channel Synthetic experiments show accurately identifies different VSWC boundaries model time depth. The predicted fit well within 40 ns, maximum error after ns less than 0.10 cm3 × cm?3. To validate our method, conducted measurements experimental field Academy Agricultural Sciences Gongzhuling City, Jilin Province applied measurements. results values match samples are consistent overall trend TDR probe samples, difference not exceeding 0.03 Therefore, study shows has be obtain data farmland.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring Soil Water Content with Ground Penetrating Radar: A Review

termines the diurnal evolution of the atmospheric boundary layer (Callies et al., 1998). Currently, there is a need We present a comprehensive review of methods to measure soil to establish and quantify the contribution of soil water water content with ground penetrating radar (GPR). We distinguish content–regulated land–atmosphere coupling to regional four methodologies: soil water content det...

متن کامل

Advanced Inversion Techniques for Ground Penetrating Radar

Ground Penetrating Radar (GPR) systems are nowadays standard inspection tools in several application areas, such as subsurface prospecting, civil engineering and cultural heritage monitoring. Usually, the raw output of GPR is provided as a B-scan, which has to be further processed in order to extract the needed information about the inspected scene. In this framework, inverse-scattering-based a...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier

The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons (IRHs) in helicopter-borne ground-penetrating radar (GPR) data. For each individual GPR measurement, the s...

متن کامل

Mass conservative three-dimensional water tracer distribution from Markov chain Monte Carlo inversion of time-lapse ground-penetrating radar data

[1] Time-lapse geophysical measurements are widely used to monitor the movement of water and solutes through the subsurface. Yet commonly used deterministic least squares inversions typically suffer from relatively poor mass recovery, spread overestimation, and limited ability to appropriately estimate nonlinear model uncertainty. We describe herein a novel inversion methodology designed to rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15071906